Overview of the day

▼ Introduction to storage systems
 – storage devices and their workloads
 – request scheduling

▼ Disk arrays
 – high-reliability redundant storage: making sure it’s there when you need it
 – new kinds of disk arrays

▼ Storage area networks
 – connecting storage to its clients
 – CMU’s NASD

▼ Storage management
 – keeping it all together
Acknowledgements

▼ **SSP**: Guillermo Alvarez, Eric Anderson, Ralph Becker-Szendy, Martha Escobar, Susie Go, Michael Hobbs, Kim Keeton, Arif Merchant, Erik Riedel, Cristina Solorzano, Mustafa Uysal, Alistair Veitch

▼ **ex-SSP**: Richard Golding, David Jacobson, Chris Ruemmler, Mirjana Spasojevic

▼ **Others**:
 – Ed Grochowski (IBM Almaden)
 – David Nagle & Garth Gibson (CMU)

▼ **St Andrews University**

▼ **To learn more**:

http://www.hpl.hp.com/SSP/
Introduction to storage systems [1:15]
Introduction to storage systems

▼ An overview of current storage devices
 – storage hierarchies
 – the storage business

▼ How disk drives work
 – mechanisms
 – technology trends
 – controllers

▼ Request scheduling

▼ Workloads
 – Workload characterization
 – How file systems and databases use storage
Introduction: what are we talking about?

▼ Storage systems
 - the place where persistent data is kept
 - the center of the universe!

▼ Why?
 - information (and hence storage) is key to most endeavours
 - storage is big business (tens of US$b/year)
 - sheer quantities (hundreds of petabytes/year)

 - “Storage will dominate our business in a few years”
 • Compaq VP, 1998
 - “In 3 to 5 years, we will start seeing servers as peripherals to storage”
 • SUN Chief Technology Officer, 1998
Introduction: what are we talking about?

▼ Hardware components
 – Storage devices
 • mechanisms, controllers, packaging
 – Storage connectivity
 • bus/interconnect fabric, host adapters

▼ Software components
 – Critical-path software
 • OS device driver
 • OS logical volume manager
 • File system/database system
 – Storage management software
Introduction: storage hierarchy

- **Primary storage: CPU**
 - registers (1 cycle, a few ns)
 - cache (10-200+ cycles, 0.02–0.5us)
 - local main memory (0.2–4us)
 - NUMA memory (2–10x local memory)

- **Secondary storage ("online storage")**
 - magnetic disks (2–20ms)
 - solid state disks (0.05–0.5ms)
 - cache in storage controllers (0.05–0.5ms)

- **Tertiary storage**
 - removable media: tape cartridges, floppies, CD, … (ms to minutes)
 - tape libraries, optical jukeboxes "nearline" (few s to few minutes)
 - tape vaults (few minutes to days)
Secondary storage devices

▼ Sealed-mechanism magnetic disks ("Winchesters")
 - dominate the industry
 - 1-50+ GB capacity

▼ Other
 - Solid-state disks
 - DRAM package with a battery to look and feel like a disk
 - Promising(?) “new” technologies
 - holographic storage
 - ARS/MEMS (micro-actuators)
 - MRAM (the return of core memory!)
Tertiary storage devices

- Flash-RAM cards (1-100 MB)
- Floppy disks, Iomega zip, removable disk, (1-200 MB)
- CD-ROM, CD-RW (600 MB; replacing floppies in many uses)
- Magneto-optical (MO) disks (0.6-4 GB/platter)
- DVD (up to 4.5 GB; writable DVD “is on its way”)

- Magnetic tapes (1-100 GB/tape)
 - linear format: 1/2” open reel (largely vanished); cartridge tapes
 - helical-scan: DDS (aka “DAT”)
 - serpentine: DLT, Linear Tape Open (LTO)

- Libraries (and vaults)
 - 10-1000+ tapes, CD-ROM, or MO disks
 - pick & load times of few seconds to a couple of minutes
Uses for tertiary storage

▼ Portable, personal data
 – data interchange
 – software distribution

▼ Backups against failures
 – media/site failure
 – user error:
 \[\text{rm * .o; ... "File .o not found"}\]

▼ Archiving for later use
 – ordered, indexed, coherent data
 – banks, credit card companies, insurance
 – life-critical engineering industry (e.g., aircraft engines)

▼ Really big quantities of data
 – NASA satellite data, NSA, ...
1999 DISK/TREND report: revenue projections

Source: DISK/TREND, Inc.
http://www.disktrend.com
June 1999
1999 DISK/TREND report: unit projections

Annual shipments (million units)

Source: DISK/TREND, Inc.
http://www.disktrend.com
June 1999
Hard-disk prices

Source: http://www.pricewatch.com/
16 Feb 2000
Business trend: storage as % of system cost

Source: Gartner group
Business trend: data is moving into databases

WHO OWNS THE DATA?
Data Resident on Open Systems Servers

Source: Systems Research, 1998
IBM Areal Density Perspective
43 Years of Technology Progress

- Travelstar 18GT
- Ultrastar 72ZX
- Deskstar 37 GP

1st GMR Head
1st MR Head
1st Thin Film Head
25% CGR
60% CGR
5 Million X Increase

Areal Density Megabits/in²

RAMAC

Production Year

Ed Grochowski at Almaden
Introduction to storage systems

- An overview of current storage devices
 - storage hierarchies
 - the storage business

- How disk drives work
 - mechanisms
 - technology trends
 - controllers

- Request scheduling

- Workloads
 - Workload characterization
 - How file systems and databases use storage
Magnetic disk drives: what is inside them?

- Host interface
- Speed-matching buffer and cache
- Servo/motor electronics
- Control processor
- R/W electronics
Areal density = linear density * track density

- a disk drive has 1 to 12 platters, 2 heads per platter
- a platter has ~2,000-40,000 tracks
- 1 track contains ~50-200KB
- 1 sector is ~512 B (may be growing to 1-2KB)
Track, Areal, Linear Density Perspective

Track Density, CGR = 30%
Areal Density, CGR = 60%
Linear Density, CGR = 23%

IBM Disk Drive Products
Circles = Server products
Squares = Mobile products

Availability Year

Ed Grochowski at Almaden
Magnetic disk drive: mechanical innards

Source: How hard disks work, Marshall Brain
http://www.howstuffworks.com/hard-disk.htm
1999
Magnetic disk drives: mechanical performance

▼ Seek time
- accelerate (35-40g) [coast]
 slow down
- settle
- single-track seeks
 • “track-switch”
 • special-case performance

▼ Rotational latency
- 3600 RPM ... 5400 ... 7200 ... 10,000 ... 12,000 ...

▼ Head switches
- between platters
- multiple head drives (now extinct)
IBM HDD Access/Seek Time-Performance Increase

Accessing

Seeking

Rotating

seek time \sim \left(\frac{\text{inertia}}{\text{power}} \right)^{1/3} \times \left(\text{data band} \right)^{2/3}

rotational time \sim \left(\text{RPM} \right)^{-1}

(latency)

Ed Grochowski at Almaden
Magnetic disk drives: a few complications

▼ Zoning
 – outer tracks are longer than inner ones
 – tracks have different capacities
 benefits: increased density, higher data rate

▼ Track-skew, cylinder-skew
 – slip the start of the next track by the time it takes to switch to it
 benefit: increased sequential transfer performance

▼ Sparing
 – leave space for when things go wrong; skip over them
Caching
- read-ahead (multiple streams?)
- write behind
- atomicity guarantees (not!)

Controlling the mechanism
- spindle motor
- arm servo-following

Data path management
- DMA control
- protocol sequencing
- request scheduling
Overall I/O performance under real loads

• **Real** is traced I/O load from 1992
• **Simulated** is Chris Ruemmler’s disk simulator (Pantheon progenitor)
• **Demerit figure** is (basically) area between these two curves

HP 97560

Quantum 425
Introduction to storage systems

▼ An overview of current storage devices
 – storage hierarchies
 – the storage business

▼ How disk drives work
 – mechanisms
 – technology trends
 – controllers

▼ Request scheduling

▼ Workloads
 – Workload characterization
 – How file systems and databases use storage
Disk request scheduling

- I/O requests are very bursty
 - queue lengths up to 1000 have been seen
 - especially important for writes

- Queueing takes place in:
 - host device driver
 - disk/array controller
 - in practice: both

- Traditional 1D schemes: minimize seeks
- Better 2D schemes: include rotational latency, too
 - but have to be done in the disk!
1D request scheduling: minimize seeks

- **FCFS/FIFO:** first-in first-out (terrible!)

- **SCAN:** start at one end of the disk, sweep to the other, then reverse direction. **CSCAN:** at end, go straight back to start.

- **[C]LOOK:** like **[C]SCAN**, but go back to first *request*, not start of disk
2D disk request scheduling: min(seek+rotation)

- **Shortest Positioning Time First** (aka Shortest Access Time First)
 - Like cpu scheduling: “do the shortest jobs first”
 - you do well almost all of the time
- **Various age-weighting tricks to avoid starvation**
Scheduling algorithms: performance

HP97560 disk,
8KB reads,
Poisson arrivals;
uniform random distribution
Introduction to storage systems

- An overview of current storage devices
 - storage hierarchies
 - the storage business

- How disk drives work
 - mechanisms
 - technology trends
 - controllers

- Request scheduling

- Workloads
 - Workload characterization
 - How file systems and databases use storage
Workload characterization - why?

- System monitoring
 - What’s going on?

- Improve storage system designs
 - “What if?” design questions
 - Predicting effects of new or “scaled” workloads

- Generate synthetic workloads
 - To test performance of new designs
 - To compare existing systems
Workload characterization: Rubicon (+ Pylon)

- Rubicon is a tool for measuring I/O loads
 - uses HP-UX trace-gathering measurement system
- Pylon is a tool for generating synthetic workloads
 - Rubicon output can be used as Pylon input

- Together ... can test for congruence
 - compare effects of synthetic (replayed) workload against original measurements
Rubicon: sample component tree

- Mux
 - Sends records to multiple receivers
 - Subsets trace records

- Filter
- Analyzer
- Mux
- Analyzer
- Analyzer

Measure stuff; compute workload characterization

Report

Output results in multiple formats

Sends records to multiple receivers

Subsets trace records
Workload characterization: 2 case studies

▼ Electronic mail server
 – HP OpenMail
 – Peak operation period
 – about 1400 active users

▼ Decision support database server
 – Oracle
 – 300 GB TPC-D database
 – Presentation focus: TPC-D Q5
Workload characterization: request size

- Email dominated by small (<= 8 KB) writes
- DSS dominated by larger (64 KB) reads
Workload characterization: fraction of reads

- **Email**
 - average read percent: 28%
 - we need distributions, not just averages
Workload characterization: access locality

- Email
 - Beginning of address range heavily accessed
 - Disk array caching important for performance
Workload characterization: I/O phasing

- Decision support database: TPC-D query
- Request rates vary widely
- Most multi-table queries have multiple phases
Workload characterization: I/O phasing

- Decision support database: TPC-D query
- “Read-only” workload exhibits writes!
Workload characterization: request size

- Decision support database: TPC-D query
- Different behavior from different parts of the database:
 - table, indices, temp space, log
Workload characterization: lessons learned

▼ Lessons learned:
- List of important characteristics is longer than you think
- Distributions, not averages, are important

▼ Characteristics of interest:
- Request size distribution
- Request rate distribution
- Read:write ratio
- Spatial locality (e.g., sequentiality)
- Temporal locality (e.g., data re-references)
- Correlation between accesses to different parts of storage system
- Burstiness
- Phased behavior
Workload characterization: open problems

- Characterizing workloads
 - correlations
 - burstiness (self-similarity at long term)
 - good spatial locality measures

- Replaying workloads
 - accurate timing is the hard part

- Predicting future loads
 - interleaving/workload merging
 - workload scaling
 - modelling application/dbms effects
Summary so far

- Storage devices: disks, tapes, other
- Performance issues: really important!
- Scheduling is way too much fun!
- Application behavior matters!