Machines Reasoning about Machines

A Personal Perspective

J Strother Moore
Department of Computer Sciences
University of Texas at Austin
Prologue

For forty years I have been working toward one goal: to make it practical to reason mechanically about hardware and software.

This is a progress report – on a career, not a research grant!
How Far Can You Travel?

At 3 miles/hour, 8 hours per day, 5 days per week, for the duration of a typical research grant, you travel 12,500 miles.

In 40 years, you travel 250,000 miles.
Theorems Proved

- simple list processing
- academic math and cs
- commercial applications
Theorems Proved: 1970s

- `ap` is associative:

 \[
 \text{equal} \ (\text{ap} \ (\text{ap} \ a \ b) \ c) \\
 \ (\text{ap} \ a \ (\text{ap} \ b \ c))
 \]

\[
\forall a \forall b \forall c \\
ap(\text{ap}(a,b),c) \\
= \\
ap(a,\text{ap}(b,c)).
\]
A Few Axioms

\(t \neq \text{nil} \)

\(x = \text{nil} \rightarrow (\text{if} \ x \ y \ z) = z \)

\(x \neq \text{nil} \rightarrow (\text{if} \ x \ y \ z) = y \)

\((\text{car} \ (\text{cons} \ x \ y)) = x \)

\((\text{cdr} \ (\text{cons} \ x \ y)) = y \)
(endp nil) = t

(endp (cons x y)) = nil
Ordered Pairs as Lists

\[
\begin{align*}
1 & \bullet \\
2 & \bullet \\
3 & \text{nil}
\end{align*}
\]

\[
(\text{cons } 1 \ (\text{cons } 2 \ (\text{cons } 3 \ \text{nil}))) = '(1 \ 2 \ 3)
\]
(defun ap (x y)
 (if (endp x)
 y
 (cons (car x)
 (ap (cdr x) y))))

(ap '(1 2 3) '(4 5 6))
= '(1 2 3 4 5 6)
(equal (ap (ap a b) c) (ap a (ap b c)))
(equal (ap (ap a b) c) (ap a (ap b c)))

Proof: by induction on a.
Proof: by induction on a.

Base Case: \((\text{endp } a)\).
\[
\begin{align*}
\text{(equal} \; \text{(ap (ap a b) c)} & \\
\text{ (ap a (ap b c)))}
\end{align*}
\]
\[(\operatorname{equal} \ (\operatorname{ap} \ (\operatorname{ap} \ a \ b) \ c) \ \\
\quad \quad \ (\operatorname{ap} \ a \ (\operatorname{ap} \ b \ c)))\]

Proof: by induction on \(a\).

Base Case: \((\operatorname{endp} \ a)\).
\[(\operatorname{equal} \ (\operatorname{ap} \ b \ c) \ \\
\quad \quad \ (\operatorname{ap} \ a \ (\operatorname{ap} \ b \ c)))\]
(equal (ap (ap a b) c)
 (ap a (ap b c)))

Proof: by induction on a.

Base Case: (endp a).
(equal (ap b c)
 (ap a (ap b c)))
(equal (ap (ap a b) c)
 (ap a (ap b c)))

Proof: by induction on a.

Base Case: (endp a).
(equal (ap b c)
 (ap b c))
(equal (ap (ap a b) c)
 (ap a (ap b c)))

Proof: by induction on a.

Base Case: (endp a).
(equal (ap b c)
 (ap b c))
(equal (ap (ap a b) c)
 (ap a (ap b c)))

Proof: by induction on a.

Base Case: (endp a).
(equal (ap (ap a b) c)
 (ap a (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (ap (ap a b) c)
 (ap a (ap b c)))
(equal (ap (ap (cdr a) b) c) ; Ind Hyp
 (ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (ap (ap a b) c)
 (ap a (ap b c)))
(equal (ap (ap (cdr a) b) c) ; Ind Hyp
 (ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (ap (cons (car a)
 (ap (cdr a) b)) c)
 (ap a (ap b c)))
(equal (ap (ap (cdr a) b) c) ; Ind Hyp
 (ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (ap (cons (car a)
 (ap (cdr a) b)) c)
 (ap a (ap b c)))
(equal (ap (ap (cdr a) b) c) ; Ind Hyp
 (ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (cons (car a)
 (ap (ap (cdr a) b) c))
 (ap a (ap b c)))
(equal (ap (ap (cdr a) b) c) ; Ind Hyp
(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (cons (car a)
 (ap (ap (cdr a) b) c))
 (ap a (ap b c)))
(equal (ap (ap (cdr a) b) c) ; Ind Hyp
 (ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (cons (car a)
 (ap (ap (cdr a) b) c))
 (cons (car a)
 (ap (cdr a) (ap b c))))
(equal (ap (ap (cdr a) b) c) ; Ind Hyp
 (ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (cons (car a)
 (ap (ap (cdr a) b) c))
 (cons (car a)
 (ap (cdr a) (ap b c)))))
\begin{align*}
(\text{equal} & \ (\text{ap} \ (\text{ap} \ (\text{cdr} \ a) \ b) \ c)) \quad ; \ \text{Ind Hyp} \\
(\text{ap} & \ (\text{cdr} \ a) \ (\text{ap} \ b \ c)))
\end{align*}

Proof: by induction on a.

Induction Step: (not (\text{endp} \ a)).

\begin{align*}
\text{equal} & \\
(\text{ap} & \ (\text{ap} \ (\text{cdr} \ a) \ b) \ c) \\
(\text{ap} & \ (\text{cdr} \ a) \ (\text{ap} \ b \ c)))
\end{align*}
Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (ap (ap (cdr a) b) c)
 (ap (cdr a) (ap b c))))
\[
(\text{equal} \ (\text{ap} \ (\text{ap} \ (\text{cdr} \ a) \ b) \ c) \quad ; \ Ind \ Hyp \\
(\text{ap} \ (\text{cdr} \ a) \ (\text{ap} \ b \ c)))
\]

Proof: by induction on \(a\).

Induction Step: (not \((\text{endp} \ a))\).

\[
(\text{equal} \ (\text{ap} \ (\text{ap} \ (\text{cdr} \ a) \ b) \ c) \\
(\text{ap} \ (\text{cdr} \ a) \ (\text{ap} \ b \ c)))
\]
(equal (ap (ap a b) c)
 (ap a (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (ap (ap a b) c) (ap a (ap b c)))

Proof: by induction on a.

Q.E.D.
database composed of “books” of definitions, theorems, and advice

User

proposed definitions, conjectures, and advice

proofs

theorem prover

Q.E.D.
database composed of “books” of definitions, theorems, and advice

proposed definitions conjectures and advice

User

proofs

theorem prover

Q.E.D.
Q.E.D.

User

proposed definitions, conjectures, and advice

User

proofs

theorem prover

database composed of “books” of definitions, theorems, and advice
Q.E.D.

of "books" of definitions, theorems, and advice
ACL2 Demo 1

simple list processing

academic math and cs

commercial applications
Theorems Proved

simple list processing

academic math and cs

commercial applications
1980s Academic Math

• undecidability of the halting problem (18 lemmas)

• invertibility of RSA encryption (172 lemmas)
• Gauss’ law of quadratic reciprocity [Russinoff] (348 lemmas)

• Gödel’s First Incompleteness Theorem [Shankar] (1741 lemmas)
1980s Academic CS

- The CLInc Verified Stack:
 - microprocessor: gates to machine code [Hunt]
 - assembler-linker-loader (3326 lemmas)
 - compilers [Young, Flatau]
 - operating system [Bevier]
Procedure Mult(var K: int := 0;
loop
if K <= 0

formal models related by mechanically checked proofs

01110100000011
011001000000011
0111010001001111
0111010001001111
0111010001001111
0111010001001111

fabricated by mechanically checked proofs

Micro-Gypsy

Piton assembly language

FM9001 machine code

Formal NDL netlist

INPUTS A, B, C; OUTPUTS SUM, CARR LEVEL FUNCTION;
DEFINE
T0(SUM1, CARRY1) = H
(SUM, CARRY2) =

die plot produced by LSI Logic, Inc, from verified NDL via conventional CAD tools

FM9001 device

Machine code

Formal NDL netlist

Micro-Gypsy
Theorems Proved

- Simple list processing
- Academic math and cs
- Commercial applications
1990s

- Motorola 68020 and Berkeley C String Library (Yu)
- Motorola CAP DSP (Brock)
- FDIV on AMD K5 (Moore-Kaufmann-Lynch)
An elusive circuitry error is causing a chip used in millions of computers to generate inaccurate results

Intel Corp. last week took a $475 million write-off to cover costs associated with the divide bug in the Pentium microprocessor’s floating-point unit — *EE Times, Jan 23, 1995*
AMD K5 Algorithm $\text{FDIV}(p, d, mode)$

1. $sd_0 = \text{lookup}(d)$ [exact 17 8]
2. $d_r = d$ [away 17 32]
3. $sdd_0 = sd_0 \times d_r$ [away 17 32]
4. $sd_1 = sd_0 \times \text{comp}(sdd_0, 32)$ [trunc 17 32]
5. $sdd_1 = sd_1 \times d_r$ [away 17 32]
6. $sd_2 = sd_1 \times \text{comp}(sdd_1, 32)$ [trunc 17 32]

... ... = ...

29. $q_3 = sd_2 \times ph_3$ [trunc 17 24]
30. $qq_2 = q_2 + q_3$ [sticky 17 64]
31. $qq_1 = qq_2 + q_1$ [sticky 17 64]
32. $fdiv = qq_1 + q_0$ $mode$
The Futility of Testing

If AMD builds this, will it work?

A bug in this design could cost AMD hundreds of millions of dollars.

To test all possible combinations on the fastest machine in the world today would take over 500 billion billion billion (\(556 \times 10^{27}\)) years!
The Formal Model of the Code

(defun FDIV (p d mode)
 (let*
 ((sd0 (eround (lookup d) '(exact 17 8)))
 (dr (eround d '(away 17 32)))
 (sdd0 (eround (* sd0 dr) '(away 17 32)))
 (sd1 (eround (* sd0 (comp sdd0 32)) '(trunc 17 32)))
 (sdd1 (eround (* sd1 dr) '(away 17 32)))
 (sd2 (eround (* sd1 (comp sdd1 32)) '(trunc 17 32)))
 ...)
 (qq2 (eround (+ q2 q3) '(sticky 17 64)))
 (qq1 (eround (+ qq2 q1) '(sticky 17 64)))
 (fdiv (round (+ qq1 q0) mode)))
 (or (first-error sd0 dr sdd0 sd1 sdd1 ... fdiv)
 fdiv)))
The K5 FDIV Theorem (1200 lemmas)

(defthm FDIV-divides
 (implies (and (floating-point-numberp p 15 64)
 (floating-point-numberp d 15 64)
 (not (equal d 0))
 (rounding-modep mode))
 (equal (FDIV p d mode)
 (round (/ p d) mode))))

(by Moore, Lynch and Kaufmann, in 1995, before the K5 was fabricated)
AMD Athlon 1997

All elementary floating-point operations, FADD, FSUB, FMUL, FDIV, and FSQRT, on the AMD Athlon were

- specified in ACL2 to be IEEE compliant,
- proved to meet their specifications, and
- the proofs were checked mechanically.
1990s

- ...

- AMD Athlon floating point (Russinoff-Flatau)

- Rockwell Collins microarchitectural equivalence (Wilding, Greve)

- Rockwell Collins / aJile Systems JEM1 (Hardin-Greve-Wilding)
2000s

- IBM Power4 divide and square root (Sawada)
- Rockwell Collins AAMP7 Separation Kernel Microcode (Greve, et al)
- Rockwell Collins/Green Hills OS Kernel (Greve, et al)
• Centaur (VIA) media unit (Hunt and Swords)

• Sun Microsystems JVM (class loading and bytecode verification) (Liu)

• A Verified Theorem Prover

• ...
Centaur (VIA) Nano 64-bit x86 CPU

- ~20 FP operations verified
- LOC: FADD is 33,700 lines of Verilog
- Proof Times: few secs – few hrs
- Memory: 1 – 80 GB
- design and (automatic) proofs change daily
- hard-to-discover bugs found (e.g., 4 tests out of 2^{160} would have failed)
JVM Operational Semantics

M6 is an ACL2 model of the Sun JVM.

(M6 is a JVM bytecode interpreter written in pure Lisp.)

It executes most J2ME Java programs (except those with significant I/O or floating-point).
M6 was created by Hanbing Liu (now at AMD) with support from Sun Microsystems.
M6 supports

- all data types (except floats),
- multi-threading,
- dynamic class loading,
- class initialization, and
- synchronization via monitors.
Theorems

“\pi(246)=123”

“\pi(n)=\frac{n}{2}”

.javadoc

.javac

.class

.jvm2acl2

.lisp
The state we model includes an “external class table” where classes reside until they are loaded.

We have translated the entire Sun CLDC API library implementation into our external representation (672 methods in 87 classes).

The model is 160 pages of ACL2.
ACL2 Demo 2
How Do We Know ACL2 is Sound?

“Trust us!” – Kaufmann and Moore

Obviously, we would like to prove it correct.
But with what prover?
Jared Davis’ Dissertation

ACL2–like theorem prover

Small, Simple, Trusted Proof Checker
Jared Davis’ Dissertation

ACL2-like theorem prover

Correctness: If A proves Φ, then there is a proof of Φ that can be checked by C.

Small, Simple, Trusted Proof Checker

Goal: Proof Correctness with C!
ACL2–like theorem prover

Correctness: If A proves Φ, then there is a proof of Φ that can be checked by C.

Small, Simple, Trusted
Proof Checker

Goal: Proof Correctness with C!

Idea: Use A to prove Correctness, recover the claimed proof, and check it with C.
Jared Davis’ Stack “Milawa”

Level

11 Induction and other tactics
10 Conditional rewriting
9 Evaluation and unconditional rewriting
8 Audit trails (in prep for rewriting)
7 Case splitting
6 Factoring, splitting help
5 Assumptions and clauses
4 Miscellaneous ground work
3 Rules about primitive functions
2 Propositional reasoning
1 Primitive proof checker
Present - Why are we succeeding?

Reason 1: Our mathematical logic is an executable programming language.

- Many very efficient heavy-duty implementations
- Supported on many platforms
• Many independently provided programming/system development tools and environments.
Reason 2: We have invested 40 years

• supporting efficient execution,

• integrating a wide variety of proof techniques,

• engineering for industrial scale formulas, and

• developing reusable books.
Reason 3: We have chosen the right problems. In our applications, the models

- are bit- and cycle-accurate, not “toys”,
- are useful as pre-fab simulation engines, and
- permit mathematical abstraction supported by proof.
Reason 4: Industry has no other alternative; their artifacts are too complicated to analyze accurately any other way.
Our Hypothesis

The “high cost” of formal methods – to the extent the cost is high – is a historical anomaly due to the fact that virtually every project formally recapitulates the past.
The use of mechanized formal methods will ultimately

- *decrease* time-to-market, and
- *increase* reliability.
Conclusion

Mechanical reasoning systems are changing the way complex digital artifacts are built.

Complexity not an argument against formal methods.

It is an argument for formal methods.
Next Time

How to Model Machines and Prove Theorems about Code

How to Drive ACL2
References

http://www.cs.utexas.edu/users/moore/acl2